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NASA GPU Hackathon Yields Significant Code Improvements 
 
The NASA GPU Hackathon 2020 brought 
together application developers and computer 
experts to help get important NASA 
applications running effectively on graphics 
processing unit (GPU) nodes. Nine teams of 
application developers participated in this 
virtual event, a major impetus for teams to 
modernize codes of interest for NASA missions 
to CPU nodes containing GPU accelerators, 
with a focus on hands-on problem solving. The 
photo in Figure 1 shows 30 of the more than 50 
participants. The HECC project and NVIDIA 
jointly organized the event, and HECC 
provided five Pleiades nodes each with 4 V100 
GPUs for teams to use. 
 
The virtual event, which took place over four days from September 28–October 7, 2020, used 
Microsoft Teams and Slack as collaboration tools. Each team consisted of three to six members 
from NASA Centers and supporting organizations. The teams were paired with one to two 
mentors from industry, government, and academia. The experience levels of the teams ranged 
from being GPU novices to advanced CUDA programming experts. OpenACC and the emerging 
Kokkos API were used in addition to CUDA for GPU programming.  
 
During the event, which focused on accelerating AeroSciences and CFD applications, most teams 
achieved considerable performance improvements on both GPUs and CPUs. For example, a team 
with no GPU experience completed a first port of a time-critical loop to a GPU. Another team of 
expert CUDA programmers were able to restructure their algorithm, yielding a factor of five 
speed-up. And another team sped up some of their CUDA kernels by a factor of 20, which 
directly translated into their production code. 
 
This article highlights some of the many successes resulting from the event. 
  

Figure 1: Virtual Hackathon group photo. 
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Finite-Element Methods Reaching for the Accelerator Roofline 
using CUDA 

Figure 2: Temperature contours from a film-cooling benchmark computed using eddy.  

Finite-element methods (FEM) are popular due in part to their high arithmetic intensity, low 
communication costs, and potential for arbitrary order of accuracy. The eddy mini-app 
implements the core of a space-time finite-element method in C/C++/CUDA. Both the full 
application and the mini-app run in arbitrary polynomial degree (N) in both space and time, but  
N=2, 4, 8, 16 are typically used due to the ease of mapping to CPU/GPU hardware. The image in 
Figure 2 results from a full application simulation using a combination of elements of polynomial 
degree from 2 through 16, depending on the local error. Team eddy started from a pre-hackathon 
CUDA C++ implementation of the mini-app, which was developed following the CPU code and 
CUDA best practices. The mini-app represents the majority of the execution time of the code, and 
is composed of three steps: interpolation to quadrature points in both space and time, computation 
of the flux at quadrature points, and accumulation of the residual within each element. The initial 
mini-app mimicked the CPU implementation, where these steps are performed in separate kernels 
that read/write from/to main memory. 

The initial mini-app was already performing fairly well, especially at high order (N=8, 16), and 
was using a significant percentage of the roofline floating-point performance. However, the 
overall algorithm was bandwidth (BW) limited and the thread blocks were too small for lower-
order polynomials. In CUDA a thread block is a programming abstraction that represents a group 
of threads that can be executed serially or in parallel. 
Initially, the hope was to determine a new approach to the kernels to ease the BW limitations. 
After a thorough code review the team came up with the following steps to improve the lower-
order cases: 

• Exposing extra parallelism: the initial version optimized thread usage for the
interpolation, however it was found that using a thread structure that was optimal
for the remaining two kernels performed better, even with some idle threads during
the interpolation step. The strategy provided a speedup of 33% over the initial
implementation at N=2 and N=4;

• Taking advantage of the space-time nature of the algorithm, they fused the 3
compute kernels into one. This decoupled the work on the spatial degrees of

https://en.wikipedia.org/wiki/Thread_(computing)
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freedom performed in each temporal slice and also increased parallelism. 
• Increasing the use of dynamic shared memory for some of the most frequently accessed 

arrays, which provided an additional 40% speedup for the lowest order case, N=2. 

By combining the modifications, the team achieved a 2X speedup at 2nd order, and about 10% 
improvement at 4th order, even though the algorithms still remained memory bound. The group 
benefited greatly from this exercise, and are now testing similar ideas both on the higher-order 
implementations, and on the newest NVIDIA A100 card with increased shared memory 
capabilities per streaming multiprocessor. 

 

 
Figure 3: Table and graph show optimization impact on performance, thread-block size and speed-up 1 
V100 GPU vs 1 Cascade CPU node. The table shows that the block size for the optimized code increased 
for orders n=2,4. 
 

The table and chart in Figure 3 show the performance impact of the optimizations. The speed-up 
of the new version outperforms an Intel Cascade Lake 40-core CPU by a factor of 4–5.5X 
depending upon order.  
 
Radiative Heating Simulation Code Takes OpenACC Optimizations 
into Production 
NASA relies on aerothermodynamic simulation codes to define the convective and radiative heat 
transfer environments experienced by our planetary entry vehicles (Artemis/Orion, Mars 2020, 
Dragonfly, etc.). These environment predictions are critical to the design of the materials used for 
each vehicle’s Thermal Protection System (TPS), as well as the layout and thickness of the 
selected materials. As such, rapid and accurate aerothermal simulation is a cornerstone of 
NASA’s technical capability in the area of planetary Entry, Descent, and Landing (EDL). 
NEQAIR is one of two tools used by the agency to predict non-equilibrium radiative heat 
transfer. This is achieved by first computing the 
populations of electronically excited gas species in 
the flow field and calculating the radiation spectra 
generated, followed by solving the radiative 
transport equation to the vehicle surface. The 
NEQAIR logo in Figure 4 shows a simulated 
spectra (left) and an aeroshell flow-field  
calculation (right). 

Order TFLOPS BEFORE BlockSize 

2 0.431 4 

4 0.901 16 

8 1.357 64 

16 1.472 256 

   
Order TFLOPS AFTER BlockSize 

2 0.787 16 

4 0.981 64 

8 1.357 64 

16 1.472 256 

Figure 4: NEQAIR Logo  
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NEQAIR performs computations on a two dimensional domain discretized in space and radiative 
energy (frequency/wavelength) with typical problem sizes of O(10^2x 10^6). The majority of the 
computational time is spent on the first part of the calculation (spectra generation), which can be 
solved independently across the smaller of the two dimensions and is parallelized by MPI. Within 
this calculation are several computations over the larger second dimension which are targeted to 
be offloaded to the GPU using OpenACC. 
 
For the NASA GPU Hackathon, two mini-apps were created to quantify the speedup found when 
NEQAIR is accelerated using GPU hardware and targeted the main computational bottlenecks of 
the code: a spectral broadening function (essentially a convolution) and the bound-free radiation 
(an interpolation followed by algebraic manipulation of large arrays). These two routines account 
for roughly two-thirds of the NEQAIR runtime. Once those two routines were optimized, the next 
most time consuming routine identified was for the broadening of atomic lines. 
  
The team started out with an OpenACC implementation developed during a hackathon in 2017. 
The 2017 implementation was slower than CPU-only code. During the current NASA GPU 
Hackathon the mini-apps were able to be sped up ~10-30x depending on the case on a V100 node 
using 2 or 4 GPUs. The team successively added OpenACC “parallel loop” directives to the 
time-consuming routines listed above. The two main breakthroughs for the optimizing the 
molecular broadening routine were to firstly reverse the loop order within the offloaded kernels, 
which avoided using atomics, and secondly, to check for and skip calculations on zero valued 
entries. A key component for porting the mini-apps to the main code was figuring out how to run 
MPS (Multi-Process Server) since we are in an MPI environment. MPS allows multiple CUDA 
processes to share a single GPU context. The partitioning of the GPUs to MPI ranks was achieved 
by using MPI_COMM_SPLIT_TYPE and a sequence of runtime OpenACC runtime commands. 
Attention was also given to data movement and tracking what is on the device and host at various 
points throughout the calculation. 
 
The NEQAIR mini-app updates were 
included into the main development branch 
of NEQAIR. The chart in Figure 5 shows 
the incremental performance improvement 
resulting from the optimizations. For 
performance measurement purposes, the 
ratio of cores/ranks per GPU was fixed at 
9:1 when more than 9 ranks were employed. 
The performance was measured in terms of 
speed-up relative to a single core with no 
GPU. The updated code with molecular 
broadening and bound-free + molecular 
broadening offload was about 40% and 80% 
faster than the CPU code, respectively (on 9 
ranks). Offloading the Atomic broadening 
routine, the speed up was increased to 4-5x. 
Additional offloading increased the speed up 
further. On 1-2 ranks, a speed up of ~8x is 
now realized. This speed up should enable 
improved through-put for 3D and coupled radiation calculations for future NASA mission  
vehicle design. 
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Figure 5: NEQAIR when successively off-loading more kernels to 
the GPU performance. 
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Accelerating Design of NASA’s Planetary Entry Vehicles using Kokkos 
 
Whenever NASA brings astronauts back from Earth 
orbit or sends a probe to Mars, a specially designed 
entry vehicle must be used to protect our precious 
cargo from the extreme heating generated when 
entering an atmosphere at over 10,000 miles per hour. 
For decades, NASA relied on LAURA and DPLR to 
predict the convective heat flux experienced by our 
entry vehicles. LAURA and DPLR are multi-block-
structured, finite-volume CFD codes that solve the 
Navier-Stokes equations with extensions to 
accommodate the thermodynamic and chemical non-
equilibrium effects that become important at 
planetary entry velocities. Both codes run on 
conventional CPU architectures and use the Message 
Passing Interface (MPI) standard to enable domain 
decomposition parallelization. The image in Figure 6 
shows heating contours for the Space Shuttle during 
re-entry, as computed with DPLR. 

 
For the NASA GPU Hackathon, the LAURA and DPLR development team NFLOW-CHEM 
brought forward a pair of mini-apps representative of key computational kernels in our codes. 
The first mini-app developed is representative of the Symmetric Total-Variation-Diminishing 
(STVD) flux scheme used in LAURA. The primary challenge for this mini-app is managing 
spatial and temporal data locality, as the STVD scheme involves data access from a 13-point 
stencil at each cell in the structured grid. The second mini-app is derived from DPLR, and 
evaluates and linearizes the high temperature, finite-rate chemical kinetic models utilized in both 
codes. This mini-app is an embarrassingly parallel loop over the cells of a computational grid, 
computing the net species production and non-equilibrium heat release in each cell due to an 
Arrhenius-style 19-reaction air chemistry model suitable for Lunar return re-entry analysis.  
 
Both mini-apps utilized the Kokkos Performance Portability Library as the programming model 
for GPU porting. This library was selected because it provides a highly customizable parallel 
execution framework in standard C++ that enables controlling data layout and performing 
computation in parallel using CPUs and/or GPUs from a variety of hardware vendors. 
Specifically, Kokkos provides a multidimensional array type that can be specialized for a variety 

Figure 6: Surface heating contours for the Space 
Shuttle during re-entry, as computed with DPLR.  

 
Figure 7: A simple example of dispatching a three-level tightly nested loop for parallel execution in 
Kokkos. This code can run as written on CPU and GPU depending on the "ExecSpace" (Execution Space) 
selected at compile time. Kokkos will alter the data layout of “state” and the i/j/k iteration order of the 
loop to promote cache-friendly access on CPU and coalesced memory access on GPU. 
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of memory layouts, including a tiled memory layouts designed for stencil operations. Selection of 
the memory layout can be changed at compile time without changing any of the code that actually 
uses the array. Kokkos also offers mechanisms for expressing hierarchical parallelism, which 
allows for precise control of how work is parallelized on CPU and GPU. Figure 7 shows a 
Kokkos code example. 

 
At the end of the hackathon, the mini-
app performance was measured for a 
variety of problem sizes on both a 
conventional dual-socket Intel Xeon 
Skylake compute node and a single 
NVIDIA V100 GPU. Figure 8 shows 
that utilizing the V100 GPU with the 
Kokkos CUDA backend the team 
achieved ~11.5x for the Flux mini-app 
for an 11 species reacting air model 
typically used for analysis of lunar 
return trajectories. The Kinetics mini-
app achieved a ~5x speed-up. In 
particular, Kokkos’ ability to rapidly 
explore different threading strategies 
for the GPU was crucial for 
maximizing performance and strong 
scaling of the DPLR chemical kinetics 
mini-app. The Kokkos tiled memory 
layout was also found to be very 
performant on both GPU and CPU architectures when utilized by the LAURA inviscid  
flux mini-app. 
 
Heat Transfer in Turbomachinery Jump-starts on GPU with OpenACC 
Glenn-HT is a CFD code that is in continuous use and development at NASA Glenn Research 
Center. It is extensively used for calculations of heat transfer in turbomachinery. It is 
implemented in Fortran 90. 
Parallelization is based on domain 
decomposition and MPI. Numerical 
algorithms employed are explicit 
Runge-Kutta methods, implicit 
alternating-direction solvers and red-
black Gauss-Seidel solvers for linear 
systems. In addition, multigrid 
algorithms are used for convergence 
acceleration for non-linear partial 
differential equations. The image in 
Figure 9 shows the result of an 85 
million mesh simulation using the full 
application. 

The goal of Team Glenn-HT was to develop a strategy for using GPU to accelerate computing 
and enable fast unsteady and LES simulations for multi-blade row compressors and 
turbomachinery flows. The focus of the Hackathon was acceleration of the AUSM (Advection 

Figure 9: Iso-surface of Q-criterion colored by normalized total 
pressure around the Low-Pressure Turbine blade. 

Figure 8: Speedup in execution time using a single NVIDIA V100 GPU 
relative to using all 40 cores of a dual-socket Intel Xeon Skylake 
node. 
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Upstream Splitting Method). The challenge when employing this scheme is, that for each surface 
(~10^6-10^7 surface), based on the gradient of each of the variables, the flux limiter, i.e. the 
Monotonic Upstream-centered scheme, has to be evaluated to avoid numerical instability. 
Another challenge of the application is the frequent call to a reshaping routine, which does not 
perform floating point calculations, but merely memory copies.  
In order to execute the time consuming compute loop on the GPU, the team employed the 
OpenACC “kernels” and “parallel loop” directives. They found that using “parallel loop gang 
vector collapse(3)” significantly reduces the computational time of the main loop. Minimizing the 
communication time for the data exchange between CPU and GPU was achieved by employing 
the “create” and “present” clauses where appropriate. In order to address the performance of 
reshaping the arrays, the team employed the Nvidia cutensorEx, which significantly reduced the 
execution time. The code changes are shown in Figure 10. Overall, Glenn-HT reported a speed-
up of almost 20X when running the mini-app on the accelerator. They are now working on a 
CUDA implementation. Profile in Figure 11shows the incremental performance improvement. 
 
 
 
 

 

 

 

 

 
 
 
 

 
Figure 11: Nvidia nsys profiles for different implementations of routines AUSM and Reshape. 

  

program main 

!@acc use cutensorEx 

  use CellCenteredMultiBlockFlow 

  use curator 

  use nvtx 

 …. 

  avk = reshape(avb,shape=aShape, order=ijkOrder) 

  

  uk = reshape(ub,shape=uShape, order=ijkOrder) 

  

  gammak = reshape(gammab,shape=ushape3, 

order=ijkOrder3) 

  

  pk = reshape(pb,shape=ushape3, order=ijkOrder3) 

  !$acc end host_data 

Figure 10: Source code sketching routines AUSM and Reshape. The left shows how present and create clauses were 
employed, the code on the right shows the use of the cutensorEX.  
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Restructuring and Replacing OpenACC with CUDA Gives 
Performance Boost to LAVA Lattice Boltzmann Mini-App 
NASA’s LAVA team created a 
Lattice Boltzmann Method mini-app 
to understand how to port their full 
app to GPU. The full app is based on 
block-structured Cartesian adaptive 
mesh refinement (AMR) with 
immersed boundaries, and is used 
for low-speed aerodynamics, as can 
be seen in Figure 12. The mini-app 
is a significantly simplified version 
of the full app and is based on a 
uniform-refinement with block 
partitioning, excluding complex 
geometry.  
 
The mini-app used for the NAS 
Hackathon ran on a single level of uniform, isotropic refinement. Its performance is limited by 
memory bandwidth. The performance of the benchmark is measured in millions of cell updates 
per second (MUPS). Team LAVA 
started from an earlier implementation 
of the mini-app which was used during 
a 2018 hackathon and was ported to the 
GPU using OpenACC directives. It 
achieved a performance of 214 MUPS 
on V100 GPU nodes at the 2018 
hackathon, where the implementation 
was restricted to a single 256^3 box. 
For the 2020 Hackathon, this was 
updated with a massive partitioning of 
the same 256^3 domain into 8^3 boxes. 
This is work towards block-structured 
AMR where more than O(10^5) boxes 
are typically used. For the 2020 
Hackathon, the team focused on 
optimization to perform iterations over 
the many small boxes efficiently on the 
GPU. The code consists of two main steps: stream and collide. The streaming step is composed of 
no floating point operations and uses halos for memory copies (27-point stencil) with 
accompanying integer arithmetic. The collide step is a massive 1D loop over all lattice sites 
where O(100) doubles per lattice site are combined with floating point operations.  
 
As a first step, the 2018 OpenACC implementation had to be adjusted to allow for multi-box 
execution. Then the team successively implemented a number of optimizations. For example, 
adding efficient chunking (i.e. fusing of small boxes into larger work units) and employing 
gang/vector looping when getting halo data yielded a performance improvement 2X. One large 
kernel was launched which simultaneously spans all the boxes and assigned one gang 
(OpenACC) or thread block (CUDA) to each box. For the collide step the loop over the boxes 
was collapsed such that there was no need for hierarchical parallelism. Another nice performance 

Figure 12: Simulation using Intel CPU version of LAVA Lattice 
Boltzmann of nose landing gear, where colors indicate velocity 
magnitude (white is fast , black is slow) 

 

Figure 13: Incremental performance improvements of NASA-LAVA on a 
V100 node. 
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increase resulted from fused halo exchange and streaming. Previously the code performed the 
halo exchange to a temporary array, which is where non-contiguous memory accesses occurred. 
Then the halo data was read into the corresponding locations in the box interior for the stream 
operation. This was combined into a single operation and read directly from the neighboring 
boxes, still paying the non-coalesced access penalty but only doing a single memory read. 
 
The code is kept in a git repository, which allows the developers to keep track of the changes and 
their impacts on performance, as can be seen for a subset of commits in Figure 13. Most striking 
is the performance boost when switching to the use of CUDA for some of the routines. Other 
findings were that multidimensional vector<vector<double>> performed poorly. Switching to 
single vector<double> resolved this issue. The team anticipates even further speed-ups for A100 
due to further improved memory bandwidth.  
 
 
 


